Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 <EC> 11/05/22

CONTINUOUS INTERNAL EVALUATION - 1

Dept:EC	Sem / Div: 6 th A&B	Sub: Digital Communication	S Code: 18EC61
Date:16/05/22	Time: 9:30-11:00 am	Max Marks: 50	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's		
PART A						
1 a Define of Unip	power spectral density. Draw the power spectra olar NRZ, Bipolar RZ and manchester code.	10	L2	CO1		
b Define	b Define Hilbert Transform. State the properties of it.		L2	CO1		
c Explain HDBN signalling with an example.		8	L2	CO1		
OR						
	the complex envelope of bandpass signals the canonical representation of bandpass signals.		L3	CO1		
b Write short note on B8ZS and B6ZS.		7	L2	CO1		
c Obtain the Hilbert transform of g(t) = Sinc(t)		8	L3	CO1		
	PART B					
	the expression for the complex low pass ntation of band pass systems.	9	L3	CO1		
b Explain represen	the time domain procedure for complementation of band pass signals and systems.	x 8	L2	CO1		
c Obtain	the Hilbert transform of $x(t) = \sin 2\pi f ct$.	8	L3	CO1		
OR						

4 a What is line coding? For the binary stream 0110100 sketch the following: i) Unipolar NRZ, ii) Polar NRZ, iii) Unipolar RZ iv) Bipolar RZ, v)Manchester code		L2	CO1
b Define pre-envelop of a real valued signal. Given a band pass signal s(t), sketch the amplitude spectra of signal s(t), pre-envelop s ₊ (t), complex envelop of s(t).		L2	CO1
c Obtain the Hilbert transform of $x(t) = \cos 2\pi f ct$.	8	L3	COI

Prepared by: Gurusandesh M

A lunt HOD